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Abstract—Micerowave structure characterization is achieved by
application of the system identification (SI) technique to the finite-
difference time-domain algorithm (FDTD). The parameters of a
deterministic auto-regressive moving-average model (ARMA) are
computed recursively such that the model output matches the
FDTD simulation. The ARMA model parameter convergence is
rapid, and provides savings in the computation time.

I. INTRODUCTION

HE finite-difference time-domain algorithm is an effec-

tive computational method for full vector analysis of
microwave structures [1]. The theoretical formulation directly
follows the Maxwell’s equations, and algorithm implementa-
tion is simple and flexible for general structures of interest.
The computation requirements, however, are excessive due
to the spatial-temporal discretization. Recently, digital signal
processing methods have been used to reduce the computa-
tional requirements of the time-domain methods [2]-[6]. For
example, the Prony’s method is used to estimate the time
signal in terms of the previously computed values [2], [3], also
a covariance based system identification (SI) algorithm has
been used to reduce the computation cost of the Transmission
Line and FDTD Methods by employing a stochastic ARMA
model [4], [5]. In this letter, a least-squares based system
identification projection algorithm for a deterministic auto-
regressive moving average model is applied to the FDTD

algorithm [7]. The application of this algorithm to the partially
filled rectangular cavity has demonstrated excellent numerical
results. Savings in the computation requirements are achieved
by replacing the computationally intensive FDTD algorithm
by the ARMA model for output signal computation, after the
system parameters converge to their final values. In addition,
the frequency response is evaluated directly from the computed
system parameters, thus eliminating the need for Fourier
transformation.

II. THEORY

The computed time signal at an appropriate location in the
computational volume and the corresponding input signal can
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be interpreted as the input and output signals of a discrete
linear system. This linear system description is

K M
y(n) = — Zaky(n —k)+ Z bmz{n —m), )
k=1

m=0

where y(n) is the output signal and z(n) is the input signal.
The output signal is completely known when the model
parameters (ag,b,,) are computed. The parameter space is
taken to be large enough to allow the convergence of the
model output to the FDTD simulated field values. Equation
(1) can be written in a compact form

y(n) = @7 (n — 1)0,, )

where T' stands for transpose, and ® is a vector containing
the present and past values of the input and output which
can be considered as data. The vector © contains the system
parameters and uniquely defines the properties of the linear
system such as the resonance frequencies. Equation (2) repre-
sents the output of a linear system as the inner product of the
® and the parameter vector. Using the available data vector ®,
the output signal can be estimated in terms of the estimated
system parameters

y(n) = T (n — 1)6(n — 1). 3)

The difference in (2) and (3) is minimized with respect to the
system parameters to arrive at a parameter update law

P(n—1)®(n—-1)
(n—1)TP(n—1)®(n — 1) [e(n)]
“)

am=ém—n+®

P(n)=P(n—1)
P(n-1)®(n—1)®(n - 1)TP(n - 1)
- O(n - 1)TP(n—1)®(n —1)
P(0) =1, &)

where P(n) provides an orthogonal projection search in the
parameter space which results in rapid parameter convergence
[6], ©(n) is the computed parameter vector, and e(n) is
the discrepancy between the estimated output and the FDTD
computed field value. Computation of (4) and (5) requires
only vector addition and multiplication, and results in minimal
additional cost to the FDTD computation. We note that the
system parameters converge to their final values when the
output error is sufficiently small.
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Fig. 1. Parameter convergence of the ARMA model with 80 coefficients.
Evolution of the first four output coefficients, see (1), is demonstrated.

III. "RESULTS

The numerical behavior of this method is demonstrated by
applying it to the cavity problem. An ARMA model with
system parameters K = 40, M = 40, (see (1)), is used to
obtain the resonance frequencies of a rectangular cavity. The
cavity is excited at the center plane by imposing a TE;¢ mode
distribution with impulsive temporal dependence. Fig. 1 shows
the parameter convergence for a number of system coefficients.
The initial condition for the parameters is set to the origin of
the parameter space, and the parameter values are updated at
each sampled interval.

The resonance frequencies of the cavity can be derived
directly from the poles of the ARMA model. They can also
be recovered from the spectrum of the output signal. This
spectrum is computed by the Fourier transform of the output
signal, or directly by evaluation of the Z-transform of (1)
on the unit circle which is defined in terms of the system
parameters. Fig. 2 shows the spectrum of the output signal
using the system parameters and the Fourier transformation
of the output signal. The recovered resonance frequencies
of the first three odd modes are illustrated. The location of
the observation point coincides with the null position of the
even modes. As a result these modes can not be recovered
from this time signal. In this example, the ARMA based
spectrum is computed using 140 output time samples. Similar
spectrum is obtained by applying the Fourier transformation
to 500 output time samples. Fig. 2 also shows the Fourier
transform of the 140 output samples which are augmented
with zero padding to provide sufficient spectral resolution for
locating the spectrum peaks. This spectrum, while qualitatively
locates the resonance frequencies, is distorted and might not
provide sufficient resolution where the resonance frequency
separation -is small. We note that the first two resonance
frequencies are predicted accurately for this example, while
higher order modes are underestimated due to frequency
dispersion of the FDTD spatial grid. This method is used to
obtain the resonant frequencies of a partially filled rectangular
cavity. Fig. 3 shows the shift in the resonant frequency
as the permittivity is graduwally changed from € = 1 to
€ =2,
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Fig. 2. FDTD generated output spectrum. 140 time samples (at a rate of
1 sample per 5 FDTD output values) are used to obtainthe spectrum by the
SI method. Similar spectrum is obtained by Fourier transformation of 500
samples. The Fourier transform of the 140 samples with zero padding is
distorted.
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Fig. 3. Resonance frequency computation of a partially filled rectangular
cavity using the ARMA model. (a) Cavity geometry. (b) The first resonance
frequency shifts as the permittivity ischanged gradually from e =1to ¢ = 2.

IV. CONCLUSION

In this letter, a projection SI algorithm is applied to FDTD
simulation of cavity problems. The SI algorithm requires
minimal additional computational cost, provides rapid conver-
gence of the system parameters, and computes the parameters
of a deterministic ARMA model recursively using the in-
put and output signals of the FDTD simulation. Savings in
the computation requirements ate achieved by replacing the
computational intensive FDTD algorithm with the ARMA
model once the system parameters converge to their final
values. In addition, the ARMA model directly provides the
frequency spectrum thus eliminating the use of Fourier trans-
formation.
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