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Abstract-Mlerowave structure characterization is achieved by

application of the system identification (S1) technique to the finite-

difference time-domain algorithm (FDTD). The parameters of a
deterministic auto-regressive moving-average model (ARMA) are
computed recursively such that the model output matches the
FDTD simulation. The ARMA model parameter convergence is
rapid, and provides savings in the computation time.

I. INTRODUCTION

T HE finite-difference time-domain algorithm is an effec-

tive computational method for full vector analysis of

microwave structures [1]. The theoretical formulation directly

follows the Maxwell’s equations, and algorithm implementa-

tion is simple and flexible for general structures of interest.

‘I he computation requirements, however, are excessive due

to the spatial-temporal discretization. Recently, digital signal
processing methods have been used to reduce the computa-

tional requirements of the time-domain methods [2]–[6], For

example, the Prony’s method is used to estimate the time
signal in terms of the previously computed values [2], [3], also
a covariance based system identification (S1) algorithm has
been used to reduce the computation cost of the Transmission
Line and FDTD Methods by employing a stochastic ARMA

model [4], [5]. In this letter, a least-squares based system

identification projection algorithm for a deterministic auto-

regressive moving average model is applied to the FDTD

algorithm [7]. The application of this algorithm to the partially

tilled rectangular cavity has demonstrated excellent numerical

results. Savings in the computation requirements are achieved

by replacing the computationally intensive FDTD algorithm

by the ARMA model for output signal computation, after the

system parameters converge to their final values. In addition,

the frequency response is evaluated directly from the computed

system parameters, thus eliminating the need for Fourier

transformation.

II. THEORY

The computed time signal at an appropriate location in the

computational volume and the corresponding input signal can
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be interpreted as the input and output signals of a discrete

linear system. This linear system description is

,k=l ‘m=()

where y(n) is the output signal and x(n) is the input signal.

The output signal is completely known when the model

parameters (a~, 13m) are computed. The parameter space is

taken to be large enough to allow the convergence of the

model output to the FDTD simulated field values. Equation

(1) can be written in a compact form

7J(n) = P(n – 1)%, (2)

where T stands for transpose, and @ is a vector containing

the present and past values of the input and output which

can be considered as data. The vector 630 contains the system

parameters and uniquely defines the properties of the linear

system such as the resonance frequencies. Equation (2) repre-
sents the output of a linear system as the inner product of the

@ and the parameter vector. Using the available data vector Q,

the output signal can be estimated in terms of the estimated

system parameters

g(n) = @~(n – 1)6(?2 – 1). (3)

The difference in (2) and (3) is minimized with respect to the

system parameters to arrive at a parameter update law

6(7Z) = 6(7J – 1)+
P(7Z – l)o(rl – 1)

@(n – l)TP(n – I)@(n – 1)
[e(n)]

(4)

P(n) = P(rz – 1)

P(n – l)@(n – I)@(n – l)~P(n – 1)

@(n – l)~P(n – l)o(n – 1)

P(o)= 1, (5)

where P(n) provides an orthogonal projection search in the

parameter space which results in rapid parameter convergence

[6], @(n) is the computed parameter vector, and e(n) is

the discrepancy between the estimated output and the FDTD

computed field value. Computation of (4) and (5) requires

only vector addition and multiplication, and results in minimal

additional cost to the FDTD computation. We note that the

system parameters converge to their final values when the

output error is sufficiently small.
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Fig. 1. Parameter convergence of the ARMA model with 80 coefficients.
Evolution of the first four output coefficients, see (l), is demonstrated.

III. RESULTS

The numerical behavior of this method is demonstrated by

applying it to the cavity problem. An ARMA model with

system parameters K = 40, M = 40, (see (l)), is used to

obtain the resonance frequencies of a rectangular cavity. The

cavity is excited at the center plane by imposing a TE1o mode

distribution with impulsive temporal dependence. Fig. 1 shows

the parameter convergence for a number of system coefficients.

The initial condition for the parameters is set to the origin of

the parameter space, and the parameter values are updated at

each sampled interval.

The resonance frequencies of the cavity can be derived

directly from the poles of the ARMA model. They can also

be recovered from the spectrum of the output signal. This

spectrum is computed by the Fourier transform of the output

signal, or directly by evaluation of the Z-transform of (1)

on the unit circle which is defined in terms of the system

parameters. Fig. 2 shows the spectrum of the output signal

using the system parameters and the Fourier transformation

of the output signal. The recovered resonance frequencies

of the first three odd modes are illustrated. The location of

the observation point coincides with the null position of the

even modes. As a result these modes can not be recovered

from this time signal. In thk example, the ARMA based

spectrum is computed using 140 output time samples. Similar

spectrum is obtained by applying the Fourier transformation

to 500 output time samples. Fig. 2 also shows the Fourier

transform of the 140 output samples which are augmented
with zero padding to provide sufficient spectral resolution for

locating the spectrum peaks. This spectrum, while qualitatively
locates the resonance frequencies, is distorted and might not
provide sufficient resolution where the resonance frequency
separation is small. We note that the first two resonance
frequencies are predicted accurately for this example, while
higher order modes are underestimated due to frequency
dispersion of the FDTD spatial grid. This method is used to

obtain the resonant frequencies of a partially filled rectangular

cavity. Fig. 3 shows the shift in the resonant frequency

as the permittivity is gradually changed from e = 1 to
&=2.
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Fig. 2. FDTD generated output spectrum. 140 time samples (at a rate of
1 sample per 5 FDTD output vulues) are used to obtainthe spectrum by the
S1 method. Similar spectrum is obtuined by Fourier transformation of 500
samules. The Fourier transform of the 140 samples with zero padding is
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Fig. 3. Resonance frequency computation of a pnrtially filled rectangular
cavity using the ARMA model. (a) Cavity geometry. (b) The first resonance
frequency shifts as the perrnittivity ischanged gradnatly from c = 1 to e = 2.

IV. CONCLUSION

In this letter, a projection S1 algorithm is applied to FDTD

simulation of cavity problems. The S1 algorithm requires
minimal addhional computational cost, provides rapid conver-
gence of the system parameters, and computes the parameters
of a deterministic ARMA model recursively using the in-
put and output signals of the FDTD simulation. Savings in
the computation requirements are achieved by replacing the
computational intensive FDTD algorirhm with the ARMA
model once the system parameters converge to their final

values. In addition, the ARMA model directly provides the

frequency spectrum thus eliminating the use of Fourier trans-

formation.
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